Skip to main navigation menu Skip to main content Skip to site footer

Peer Reviewed Article

Vol. 7 (2020)

Data-driven Approach to Enhance Roster of Operations: A Review

Published
25-02-2020

Abstract

When it comes to today's business environment, especially in the operations-centered industry, the most important goal is to improve the roster of activities and serve those operations in the most efficient manner possible. Powered by data Modern optimization algorithms in combination with models based on production factors have been proved to be useful in the manufacturing business for optimizing production schedules and increasing profitability. We have constructed time and cost models based on real-world data that we have collected. Make use of the information provided to determine the most effective solution to the Job-Shop Scheduling Problem utilizing three algorithms: particle filter, particle swarm optimization, and the genetic algorithm (if applicable). When we want to create operational rosters that are based on a combination of time and cost optimization, the method comes in handy.

References

  1. Adusumalli, H. P. (2018). Digitization in Agriculture: A Timely Challenge for Ecological Perspectives. Asia Pacific Journal of Energy and Environment, 5(2), 97-102. https://doi.org/10.18034/apjee.v5i2.619
  2. Adusumalli, H. P. (2019). Expansion of Machine Learning Employment in Engineering Learning: A Review of Selected Literature. International Journal of Reciprocal Symmetry and Physical Sciences, 6, 15–19. Retrieved from https://upright.pub/index.php/ijrsps/article/view/65
  3. Adusumalli, H. P., & Pasupuleti, M. B. (2017). Applications and Practices of Big Data for Development. Asian Business Review, 7(3), 111-116. https://doi.org/10.18034/abr.v7i3.597
  4. Fadziso, T., Adusumalli, H. P., & Pasupuleti, M. B. (2018). Cloud of Things and Interworking IoT Platform: Strategy and Execution Overviews. Asian Journal of Applied Science and Engineering, 7, 85–92. Retrieved from https://upright.pub/index.php/ajase/article/view/63
  5. Pasupuleti, M. B. (2017). AMI Data for Decision Makers and the Use of Data Analytics Approach. Asia Pacific Journal of Energy and Environment, 4(2), 65-70. https://doi.org/10.18034/apjee.v4i2.623
  6. Pasupuleti, M. B. (2018). The Application of Machine Learning Techniques in Software Project Management- An Examination. ABC Journal of Advanced Research, 7(2), 113-122. https://doi.org/10.18034/abcjar.v7i2.626
  7. Pasupuleti, M. B., & Adusumalli, H. P. (2018). Digital Transformation of the High-Technology Manufacturing: An Overview of Main Blockades. American Journal of Trade and Policy, 5(3), 139-142. https://doi.org/10.18034/ajtp.v5i3.599
  8. Pasupuleti, M. B., & Amin, R. (2018). Word Embedding with ConvNet-Bi Directional LSTM Techniques: A Review of Related Literature. International Journal of Reciprocal Symmetry and Physical Sciences, 5, 9–13. Retrieved from https://upright.pub/index.php/ijrsps/article/view/64
  9. Pasupuleti, M. B., Miah, M. S., & Adusumalli, H. P. (2019). IoT for Future Technology Augmentation: A Radical Approach. Engineering International, 7(2), 105-116. https://doi.org/10.18034/ei.v7i2.601
  10. Rahman, M. M., Pasupuleti, M. B., & Adusumalli, H. P. (2019). Advanced Metering Infrastructure Data: Overviews for the Big Data Framework. ABC Research Alert, 7(3), 159-168. https://doi.org/10.18034/abcra.v7i3.602