Skip to main navigation menu Skip to main content Skip to site footer

Peer Reviewed Article

Vol. 4 (2017)

Modeling Long Short-Term Memory in Quantum Optical Experiments

Published
27-02-2017

Abstract

During the previous decade, artificial neural networks have excelled in a wide range of scientific disciplines, commercial applications, and everyday professions, including medical diagnostics, self-driving automobiles, and board games, to mention a few. In contrast to classic feed-forward neural networks, long short-term memory (LSTM) designs use recurrent connections to process sequential data such as text and speech. We explain how machine learning can be used to describe quantum physics experiments. Quantum entanglement is a key component of quantum technologies such as quantum computation and quantum cryptography. The study of complex quantum states with more than two particles and a large number of entangled quantum levels is particularly interesting. Reconstructing an experimental setup that yields such a multi-particle high-dimensional quantum state is usually impossible. To come up with interesting experiments, one must randomly generate millions of setups on a computer and calculate the resulting states. In this study, we show that machine learning models beat random searches by a significant margin. We show that without having to compute the states directly, an LSTM neural network can successfully train to simulate quantum experiments by correctly predicting output state characteristics for given settings. This strategy not only speeds up the search, but it's also a prerequisite for building multi-particle high-dimensional quantum experiments using generative machine learning models.

References

  1. Abedin, M. M. M., Ahmed, A. A. A., and Neogy, T. K. (2012). Mechanism of Accountability and Auditing: Public Sector Scenarios of Bangladesh. Journal of Business Studies, 4, 131-148.
  2. Achar, S. (2015). Requirement of Cloud Analytics and Distributed Cloud Computing: An Initial Overview. International Journal of Reciprocal Symmetry and Physical Sciences, 2, 12–18. https://upright.pub/index.php/ijrsps/article/view/70
  3. Achar, S. (2016). Software as a Service (SaaS) as Cloud Computing: Security and Risk vs. Technological Complexity. Engineering International, 4(2), 79-88. https://doi.org/10.18034/ei.v4i2.633
  4. Ahmed, A. A. A. & Dey, M. M. (2009). Timeliness attributes and the extent of accounting disclosure: a study of banking companies in Bangladesh. Osmania Journal of International Business Studies, 4(1).
  5. Ahmed, A. A. A. (2009). The Effect of Timeliness Regulation of Corporate Financial Reporting: Evidence from Banking Sector of Bangladesh. Accounting and Management Information Systems, 8(2), 216 - 235. http://online-cig.ase.ro/jcig/art/8_2_4.pdf
  6. Ahmed, A. A. A. (2016). Relationship between Foreign Direct Investment and Company Taxation: Case of Bangladesh. American Journal of Trade and Policy, 3(1), 11-14. https://doi.org/10.18034/ajtp.v3i1.394
  7. Ahmed, A. A. A. and Day, M. M. (2009). Bank loan officers' perceptions of corporate financial disclosure in the banking sector of Bangladesh: An empirical analysis, Proceedings 2nd CBRC, Lahore, Pakistan, 1-12.
  8. Ahmed, A. A. A. and Neogy, T. K. (2009). Merger & Acquisitions (M&A) Goodwill Accounting: Principles and Practice. The Bangladesh Accountant, 65, 75-91.
  9. Ahmed, A. A. A., & Dey, M. M. (2009a). Corporate Attribute and the Extent of Disclosure: A Study of Banking Companies in Bangladesh. Proceedings of the 5th International Management Accounting Conference (IMAC), OCT 19-21, 2009, UKM, Kuala Lumpur, MALAYSIA, Pages: 531-553. https://publons.com/publon/11427801/
  10. Ahmed, A. A. A., Khan, W., & Hossain, M. S. (2011). Reporting Practice of Accounting Disclosure on Changes in Listed Companies of Bangladesh. ASA University Review, 5(1), 83-96. https://www.researchgate.net/publication/336664901
  11. Azad, M. R., Khan, W., & Ahmed, A. A. A. (2011). HR Practices in Banking Sector on Perceived Employee Performance: A Case of Bangladesh. Eastern University Journal, 3(3), 30–39. https://doi.org/10.5281/zenodo.4043334
  12. Begum, R., Ahmed, A. A. A., & Neogy. T. K. (2012). Management Decisions and Univariate Analysis: Effects on Corporate Governance in Bangladesh. Journal of Business Studies, 3, 87-115.
  13. Bengio, S., O. Vinyals, N. Jaitly, and N. Shazeer. 2015. Scheduled sampling for sequence prediction with recurrent neural networks. In Advances in Neural Information Processing Systems 28, pp. 1171–1179. Curran Associates, Inc., 2015.
  14. Bynagari, N. B. (2014). Integrated Reasoning Engine for Code Clone Detection. ABC Journal of Advanced Research, 3(2), 143-152. https://doi.org/10.18034/abcjar.v3i2.575
  15. Bynagari, N. B. (2015). Machine Learning and Artificial Intelligence in Online Fake Transaction Alerting. Engineering International, 3(2), 115-126. https://doi.org/10.18034/ei.v3i2.566
  16. Bynagari, N. B. (2016). Industrial Application of Internet of Things. Asia Pacific Journal of Energy and Environment, 3(2), 75-82. https://doi.org/10.18034/apjee.v3i2.576
  17. Donepudi, P. K. (2014a). Technology Growth in Shipping Industry: An Overview. American Journal of Trade and Policy, 1(3), 137-142. https://doi.org/10.18034/ajtp.v1i3.503
  18. Donepudi, P. K. (2014b). Voice Search Technology: An Overview. Engineering International, 2(2), 91-102. https://doi.org/10.18034/ei.v2i2.502
  19. Donepudi, P. K. (2015). Crossing Point of Artificial Intelligence in Cybersecurity. American Journal of Trade and Policy, 2(3), 121-128. https://doi.org/10.18034/ajtp.v2i3.493
  20. Donepudi, P. K. (2016). Influence of Cloud Computing in Business: Are They Robust?. Asian Journal of Applied Science and Engineering, 5(3), 193-196. Retrieved from https://journals.abc.us.org/index.php/ajase/article/view/1181
  21. Erhard, M., M. Malik, M. Krenn, and A. Zeilinger. 2018b. Experimental GHZ entanglement beyond qubits. Nature Photonics, 12(759).
  22. Erhard, M., R. Fickler, M. Krenn, and A. Zeilinger. 2018a. Twisted photons: new quantum perspectives in high dimensions. Light: Science & Applications, 7(3):17146.
  23. Esteva, A., B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun. 2017. Dermatologist level classification of skin cancer with deep neural networks. Nature, 542(115).
  24. Fedus, W., I. Goodfellow, and A. M. Dai. 2018. MaskGAN: Better text generation via filling in the ….. In International Conference on Learning Representations, 2018.
  25. Goodfellow, I. J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems 27, pp. 2672–2680. Curran Associates, Inc..
  26. Graves, A. 2013. Generating sequences with recurrent neural networks. arXiv:1308.0850.
  27. Gulrajani, I., F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. 2017. Improved training of wasserstein gans. In Advances in Neural Information Processing Systems 30, pp. 5767–5777. Curran Associates, Inc., 2017.
  28. Hochreiter, S and J. Schmidhuber. 1997. Long short-term memory. Neural Computation, (1735), 1997.
  29. Hochreiter, S. 1991. Untersuchungen zu dynamischen neuronalen Netzen. Diploma Thesis, TU München, 1991.
  30. Huber M. and J. I. de Vicente. 2013. Structure of multidimensional entanglement in multipartite systems. Physical Review Letters, 110(030501), 2013.
  31. Huber, M., M. Perarnau-Llobet, and J. I. de Vicente. 2013. Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems. Physical Review A, 88(4):042328.
  32. Karpathy A and L. Fei-Fei. 2015. Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3128–3137.
  33. Kaszlikowski, D., P. Gnacínski, M. Zukowski, W. Miklaszewski, and A. Zeilinger. 2000. Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett., 86(4418), 2000.
  34. Krenn, M., M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger. 2016. Automated Search for new Quantum Experiments. Phys. Rev. Lett., 116(090405), 2016.
  35. Lowerre, B. T. 1976. The Harpy speech recognition system. PhD Thesis, Carnegie Mellon University, Pittsburgh, 1976.
  36. Malik, M., M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger. 2016. Multi-photon entanglement in high dimensions. Nature Photonics, 10(248).
  37. Manavalan, M. (2014). Fast Model-based Protein Homology Discovery without Alignment. Asia Pacific Journal of Energy and Environment, 1(2), 169-184. https://doi.org/10.18034/apjee.v1i2.580
  38. Manavalan, M. (2016). Biclustering of Omics Data using Rectified Factor Networks. International Journal of Reciprocal Symmetry and Physical Sciences, 3, 1–10. Retrieved from https://upright.pub/index.php/ijrsps/article/view/40
  39. Manavalan, M., & Bynagari, N. B. (2015). A Single Long Short-Term Memory Network can Predict Rainfall-Runoff at Multiple Timescales. International Journal of Reciprocal Symmetry and Physical Sciences, 2, 1–7. Retrieved from https://upright.pub/index.php/ijrsps/article/view/39
  40. Manavalan, M., & Donepudi, P. K. (2016). A Sample-based Criterion for Unsupervised Learning of Complex Models beyond Maximum Likelihood and Density Estimation. ABC Journal of Advanced Research, 5(2), 123-130. https://doi.org/10.18034/abcjar.v5i2.581
  41. Manavalan, M., & Ganapathy, A. (2014). Reinforcement Learning in Robotics. Engineering International, 2(2), 113-124. https://doi.org/10.18034/ei.v2i2.572
  42. Mayr, A., G. Klambauer, T. Unterthiner, and S. Hochreiter. 2016. DeepTox: Toxicity Prediction using Deep Learning. Frontiers in Environmental Science, 3(80), 2016.
  43. Melnikov, A. A., H. Poulsen Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel. 2018. Active learning machine learns to create new quantum experiments. PNAS, 115(1221), 2018.
  44. Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. ICLR Workshop, arXiv:1301.3781, 2013.
  45. Neogy, T. K. and Ahmed, A. A. A. (2015). The Extent of Disclosure of Different Components of Disclosure Index: A Study on Commercial Banks in Bangladesh. Global Disclosure of Economics and Business, 4(2), 100-110. https://doi.org/10.18034/gdeb.v4i2.139
  46. Shor, P. W. 2000. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A, 52 (R2493), 2000.
  47. Siddique, M. N. & Ahmed, A. A. A. (2015). Congruence of Competitive Advantage and Transfer Pricing: A Study on Selected MNCs Operating in Bangladesh. Asian Accounting & Auditing Advancement, 5(2), 119-126. https://www.researchgate.net/publication/354712086
  48. Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis. 2017. Mastering the game of Go without human knowledge. Nature, 550(354), 2017.
  49. Sutskever, I., O. Vinyals, and Q. V. Le. 2014. Sequence to sequence learning with neural networks. In Advances in neural information processing systems, pp. 3104–3112, 2014.
  50. Yao A. M. and M. J. Padgett. 2011. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3(161), 2011.
  51. Yu, L., W. Zhang, J. Wang, and Y. Yu. 2016. Seqgan: Sequence generative adversarial nets with policy gradient. arxiv:1609.05473, 2016.

Similar Articles

You may also start an advanced similarity search for this article.