Skip to main navigation menu Skip to main content Skip to site footer

Peer Reviewed Article

Vol. 2 No. 1 (2022)

Innovative Chemistry in Rubber Recycling: Transforming Waste into High-Value Products

Published
2022-04-10

Abstract

This project investigates novel rubber recycling chemicals to turn trash into valuable goods for environmental and economic sustainability. The main goals are to evaluate innovative solvents, enzyme-based processes, and catalytic approaches for recycling efficiency and product value. The research analyzes these technologies' efficacy and advantages using secondary data from peer-reviewed literature, industry reports, and case studies. The main findings indicate that using ionic liquids and supercritical fluids enhances the dissolution efficiency, enzyme-based methods disrupt sulfur cross-links, and catalytic processes provide advantageous byproducts. These technological breakthroughs provide innovative polymers, building materials, and specialized items while decreasing the quantity of garbage disposed in landfills and cutting emissions. Despite these developments, persistent challenges regarding high technology costs and difficulty scaling still need to be addressed. The paper recommends more research funding, recycling incentives, and legal frameworks to encourage sophisticated procedures. These policy consequences must be addressed to advance recycling and create a circular economy.

References

  1. Addimulam, S., Mohammed, M. A., Karanam, R. K., Ying, D., Pydipalli, R., Patel, B., Shajahan, M. A., Dhameliya, N., & Natakam, V. M. (2020). Deep Learning-Enhanced Image Segmentation for Medical Diagnostics. Malaysian Journal of Medical and Biological Research, 7(2), 145-152. https://mjmbr.my/index.php/mjmbr/article/view/687
  2. Anumandla, S. K. R. (2018). AI-enabled Decision Support Systems and Reciprocal Symmetry: Empowering Managers for Better Business Outcomes. International Journal of Reciprocal Symmetry and Theoretical Physics, 5, 33-41. https://upright.pub/index.php/ijrstp/article/view/129
  3. Anumandla, S. K. R., Yarlagadda, V. K., Vennapusa, S. C. R., & Kothapalli, K. R. V. (2020). Unveiling the Influence of Artificial Intelligence on Resource Management and Sustainable Development: A Comprehensive Investigation. Technology & Management Review, 5, 45-65. https://upright.pub/index.php/tmr/article/view/145
  4. Darestani Farahani, T., Bakhshandeh, G.R., Abtahi, M. (2006). Mechanical and Viscoelastic Properties of Natural Rubber/ Reclaimed Rubber Blends. Polymer Bulletin, 56(4-5), 495-505. https://doi.org/10.1007/s00289-006-0508-4
  5. Gilmanshin, R., Ferenets, A. V., Azimov, Y. I., Galeeva, A. I., Gilmanshina, S. I. (2015). Innovative Technologies of Waste Recycling with Production of High Performance Products. IOP Conference Series. Materials Science and Engineering, 86(1). https://doi.org/10.1088/1757-899X/86/1/012014
  6. Guangjian, Z., Jincheng, W. (2016). Study on Application Behavior of Pyrolysis Char from Waste Tires in Silicone Rubber Composites. e-Polymers, 16(3), 255-264. https://doi.org/10.1515/epoly-2015-0285
  7. Hatakeyama, K., Kojima, T., Funazukuri, T. (2014). Chemical Recycling of Polycarbonate in Dilute Aqueous Ammonia Solution Under Hydrothermal Conditions. The Journal of Material Cycles and Waste Management, 16(1), 124-130. https://doi.org/10.1007/s10163-013-0151-8
  8. Hong, W., Li, Q., Guan, G., Di, Y., Sun, J. (2013). Research on the Microstructure and Property of an Anion Rubber Modified Asphalt. Journal of Nanomaterials, 2013. https://doi.org/10.1155/2013/316401
  9. Kothapalli, K. R. V., Tejani, J. G., Rajani Pydipalli, R. (2021). Artificial Intelligence for Microbial Rubber Modification: Bridging IT and Biotechnology. Journal of Fareast International University, 4(1), 7-16.
  10. Mohammed, M. A., Mohammed, R., Pasam, P., & Addimulam, S. (2018). Robot-Assisted Quality Control in the United States Rubber Industry: Challenges and Opportunities. ABC Journal of Advanced Research, 7(2), 151-162. https://doi.org/10.18034/abcjar.v7i2.755
  11. Nik Yahya, N. Z., Zulkepli, N. N., Kamarudin, H., Ismail, H., Ting, S. S. (2015). Effect of Recycled Nitrile Glove (rNBRg) Particle Sizes on Curing Characteristics and Physical Properties of Natural Rubber/Styrene Butadiene Rubber/Recycled Nitrile Glove (NR/SBR/rNBRg) Blends. Applied Mechanics and Materials, 815, 54-58. https://doi.org/10.4028/www.scientific.net/AMM.815.54
  12. Osmani, M. (2013). Innovation in Cleaner Production Through Waste Recycling in Composites. Management of Environmental Quality, 24(1), 6-15. https://doi.org/10.1108/14777831311291104
  13. Pydipalli, R. (2018). Network-Based Approaches in Bioinformatics and Cheminformatics: Leveraging IT for Insights. ABC Journal of Advanced Research, 7(2), 139-150. https://doi.org/10.18034/abcjar.v7i2.743
  14. Pydipalli, R. (2020). AI-Driven Metabolic Engineering for Microbial Rubber Conversion: IT-enabled Strategies. Asian Journal of Applied Science and Engineering, 9(1), 209–220. https://doi.org/10.18034/ajase.v9i1.89
  15. Pydipalli, R. (2021). Bioinformatics Tools and IT Infrastructure for High-Throughput Genomic Data Analysis. Digitalization & Sustainability Review, 1(1), 103-115. https://upright.pub/index.php/dsr/article/view/146
  16. Pydipalli, R., & Tejani, J. G. (2019). A Comparative Study of Rubber Polymerization Methods: Vulcanization vs. Thermoplastic Processing. Technology & Management Review, 4, 36-48. https://upright.pub/index.php/tmr/article/view/132
  17. Roberts, C., Pydipalli, R., Tejani, J. G., & Nizamuddin, M. (2021). Green Chemistry Approaches to Vulcanization: Reducing Environmental Impact in Rubber Manufacturing. Asia Pacific Journal of Energy and Environment, 8(2), 67-76. https://doi.org/10.18034/apjee.v8i2.750
  18. Rodriguez, M., Tejani, J. G., Pydipalli, R., & Patel, B. (2018). Bioinformatics Algorithms for Molecular Docking: IT and Chemistry Synergy. Asia Pacific Journal of Energy and Environment, 5(2), 113-122. https://doi.org/10.18034/apjee.v5i2.742
  19. Ryms, M., Januszewicz, K., Lewandowski, W. M., Klugmann-Radziemska, E. (2013). Pyrolysis Process of Whole Waste Tires as A Biomass Energy Recycling / Piroliza Opon Samochodowych Jako Energetyczny Recykling Biomasy. Ecological Chemistry and Engineering, S, 20(1), 93. https://doi.org/10.2478/eces-2013-0007
  20. Sachani, D. K., Dhameliya, N., Mullangi, K., Anumandla, S. K. R., & Vennapusa, S. C. R. (2021). Enhancing Food Service Sales through AI and Automation in Convenience Store Kitchens. Global Disclosure of Economics and Business, 10(2), 105-116. https://doi.org/10.18034/gdeb.v10i2.754
  21. Tao, G. L., Xia, Y. P., Gen, H. R., Yang, J., Wang, W. (2017). Influence of TMTD on Cross-Linking Degradation of the Waste Tire Rubber. Key Engineering Materials, 732, 43-49. https://doi.org/10.4028/www.scientific.net/KEM.732.43
  22. Tejani, J. G. (2017). Thermoplastic Elastomers: Emerging Trends and Applications in Rubber Manufacturing. Global Disclosure of Economics and Business, 6(2), 133-144. https://doi.org/10.18034/gdeb.v6i2.737
  23. Tejani, J. G. (2019). Innovative Approaches to Recycling Rubber Waste in the United States. ABC Research Alert, 7(3), 181–192. https://doi.org/10.18034/ra.v7i3.660
  24. Tejani, J. G. (2020). Advancements in Sustainable Rubber Production: Bio-Based Alternatives and Recycling Technologies. ABC Journal of Advanced Research, 9(2), 141-152. https://doi.org/10.18034/abcjar.v9i2.749
  25. Tejani, J. G., Khair, M. A., & Koehler, S. (2021). Emerging Trends in Rubber Additives for Enhanced Performance and Sustainability. Digitalization & Sustainability Review, 1(1), 57-70. https://upright.pub/index.php/dsr/article/view/130
  26. Tejani, J., Shah, R., Vaghela, H., Kukadiya, T., Pathan, A. A. (2018). Conditional Optimization of Displacement Synthesis for Pioneered ZnS Nanostructures. Journal of Nanotechnology & Advanced Materials, 6(1), 1-7. https://www.naturalspublishing.com/Article.asp?ArtcID=13193
  27. Yahya, N. Z. N., Zulkepli, N. N., Ismail, H., Ting, S. S., Bakri, M. M. A. (2016). Properties of Natural Rubber/Styrene Butadiene Rubber/Recycled Nitrile Glove (NR/SBR/rNBRg) Blends: The Effects of Recycled Nitrile Glove (rNBRg) Particle Sizes. Key Engineering Materials, 673, 151-160. https://doi.org/10.4028/www.scientific.net/KEM.673.151

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)